The evolution of large scale motions in turbulent pipe flow

نویسندگان

  • BHARATHRAM GANAPATHISUBRAMANI
  • ALEXANDER J. SMITS
چکیده

A dual-plane snapshot POD analysis of turbulent pipe flow at a Reynolds number of 104,000 is presented. The high-speed PIV data were simultaneously acquired in two planes, a crossstream plane (2D-3C) and a streamwise plane (2D-2C) on the pipe centerline. The cross-stream plane analysis revealed large structures with a spatio-temporal extent of 1-2R, where R is the pipe radius. The temporal evolution of these large-scale structures is examined using the timeshifted correlation of the cross-stream snapshot POD coefficients, identifying the low energy intermediate modes responsible for the transition between the large-scale modes. By conditionallyaveraging based on the occurrence/intensity of a given cross-stream snapshot POD mode, a complex structure consisting of wall-attached and detached large-scale structures is shown to be associated with the most energetic modes. There is a pseudo-alignment of these large structures, that together create structures with a spatio-temporal extent of about 6R, which appears to explain the formation of the very large scale motions previously observed in pipe flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large- and very-large-scale motions in channel and boundary-layer flows.

Large-scale motions (LSMs; having wavelengths up to 2-3 pipe radii) and very-LSMs (having wavelengths more than 3 pipe radii) have been shown to carry more than half of the kinetic energy and Reynolds shear stress in a fully developed pipe flow. Studies using essentially the same methods of measurement and analysis have been extended to channel and zero-pressure-gradient boundary-layer flows to...

متن کامل

Reynolds-number-dependent turbulent inertia and onset of log region in pipe flows

A detailed analysis of the ‘turbulent inertia’ (TI) term (the wall-normal gradient of the Reynolds shear stress, d〈−uv〉/dy), in the axial mean momentum equation is presented for turbulent pipe flows at friction Reynolds numbers δ+ ≈ 500, 1000 and 2000 using direct numerical simulation. Two different decompositions for TI are employed to further understand the mean structure of wall turbulence. ...

متن کامل

The Experimental Study of Nanoparticles Effect on Thermal Efficiency of Double Pipe Heat Exchangers in Turbulent Flow

In this work, the characteristics of flow and heat transfer of a fluid containing nano particles of aluminum oxide with the water volume fraction (0.1-0.2-0.3)(V/V) percent of the reports. The overall heat transfer coefficient, heat transfer and the average heat transfer fluid containing nano water - aluminum oxide in a horizontal double pipe counter flow heat exchanger under turbulent flow con...

متن کامل

Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer

Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...

متن کامل

Large eddy simulation of compressible turbulent pipe flow with heat transfer

A compressible finite volume formulation for large eddy simulation (LES) of turbulent channel flows was extended to solve the turbulent flows in pipes and annular passages. A general finite volume scheme was developed based on conservation equations in Cartesian coordinates with non-Cartesian control volumes. A dual-time stepping approach with time derivative preconditioning was employed and ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015